US009229984B2

a2 United States Patent 10) Patent No.: US 9,229,984 B2
George (45) Date of Patent: Jan. 5, 2016
(54) PARAMETER EXPRESSIONS FOR (56) References Cited

(735)

(73)

")

@

(22)

(65)

(63)

(1)
(52)

(58)

MODELING USER DEFINED FUNCTION
EXECUTION IN ANALYTICAL DATA
PROCESSING SYSTEMS

Inventor: Muthian George, Fremont, CA (US)

Assignee: Hewlett Packard Enterprise
Development LP, Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 606 days.
Appl. No.: 13/272,598
Filed: Oct. 13, 2011
Prior Publication Data
US 2012/0191690 A1 Jul. 26, 2012

Related U.S. Application Data

Continuation-in-part of application No.
PCT/US2011/022437, filed on Jan. 25, 2011.

Int. Cl.

GO6F 17/30 (2006.01)

U.S. CL

CPC ..o, GO6F 17/30471 (2013.01)

Field of Classification Search

CPC GOGF 17/30864; GOGF 17/30; GO6F
17/30389; GOGF 17/30424; GOGF 17/30448;

GOGF 17/30867; GOGF 17/30967; GOGF

21/6227

USPC i 707/759

See application file for complete search history.

U.S. PATENT DOCUMENTS

6,067,542 A 5/2000 Carino, Jr.
6,385,604 Bl 5/2002 Bakalash et al.
6,473,750 B1 10/2002 Petculescu et al.
2003/0037048 Al 2/2003 Kabra et al.
2006/0010159 Al 1/2006 Mirchandani et al.
2006/0136415 Al 6/2006 Ramsey et al.
2010/0036801 Al* 2/2010 Pirvalietal.ccccoonr.ne.n. 707/2
2010/0250572 Al 9/2010 Chen et al.
2011/0082868 Al* 4/2011 Musuluriccoovevvnenen 707/749

FOREIGN PATENT DOCUMENTS

EP 0459683 A3
EP 0455447 A3

4/1993
6/1993

* cited by examiner

Primary Examiner — Truong Vo
(74) Attorney, Agent, or Firm — Tarolli, Sundheim, Covell
& Tummino L.L.P.

(57) ABSTRACT

Systems and apparatuses are provided for analytical data
processing. A system includes a processor and a non-transi-
tory computer readable medium, comprising machine read-
able instructions executable by the processor. The instruc-
tions include a query compiler to identify a call to a user
defined function within a query. The call to a user defined
function includes an input argument and a parameter expres-
sion defining a parameter value for the user defined function.
A processing engine executes the user defined function to
provide a function output according to the input argument and
the defined parameter value.

15 Claims, 2 Drawing Sheets

[—10

MEMORY -14- 12
22 24
QUERY DATABASE PROCESSOR
COMPILER ! ENGINE
* Vs 16
o8 26 COMMUNICATIONS
yay DATABASE INTERFACE
UDF TABLE

U.S. Patent Jan. 5,2016 Sheet 1 of 2 US 9,229,984 B2
“(,—10
MEMORY -14- 12
22 24
QUERY DATABASE PROCESSOR
COMPILER » ENGINE
* t o 16
28 _—~26 COMMUNICATIONS
L DATABASE INTERFACE
Ubr TABLE
FIG. 1
“(f-so
MEMORY &4 52
62 54 /-
72 80 PROCESSING 56
— - ENGINE L
QUERY ~ QUERY 1IN | COMMUNICATIONS
PARSER OPTIMIZER INTERFACE
I 78 I 76 — 66
UDF METADATA
CLASS DATA
TYPES
w FUNCTION TABLE
7 LIBRARY

FIG. 2

U.S. Patent Jan. 5,2016 Sheet 2 of 2 US 9,229,984 B2
‘/— 100
L~ 102
IDENTIFY A CALL TO AFIRST USER DEFINED FUNCTION
INCLUDING AN INPUT ARGUMENT AND A PARAMETER
EXPRESSION DEFINING A PARAMETER VALUE
_—~ 106

EVALUATE
PARAMETER

VALUE

104

EXECUTE THE USER
DEFINED FUNCTION USING
THE INPUT ARGUMENT TO

PRODUCE AN OUTPUT
REPRESENTING A FIRST
ANALYTICAL MODEL

108

EXECUTE THE USER DEFINED FUNCTION USING THE
INPUT ARGUMENT TO PRODUCE AN OUTPUT
REPRESENTING A SECOND ANALYTICAL MODEL

FIG. 4

FIG. 3
-200-
206 208 ~210
SYSTEM | | MEMORY MEMORY
MEMORY | | DEVICE DEVICE
~216
t t — 202 t ™| DISPLAY
BUS _~218
t t INPUT
204 212 DEVICE
PROCESSING COMMUNICATION
-—
UNIT INTERFACE \ 2'1 4

US 9,229,984 B2

1
PARAMETER EXPRESSIONS FOR
MODELING USER DEFINED FUNCTION
EXECUTION IN ANALYTICAL DATA
PROCESSING SYSTEMS

RELATED APPLICATIONS

The present invention claims priority from and is a Con-
tinuation-in-Part of PCT/US11/22437 filed on 25 Jan. 2011,
which is herein incorporated by reference.

TECHNICAL FIELD

This invention relates to information processing, and more
particularly, to the application of parameter expressions for
modeling user defined function execution in data processing
systems.

BACKGROUND

Analytical processing systems consume tables of data
which are typically linked together by relationships that sim-
plify the storage of data and make queries of the data more
efficient. A standardized query language, such as Structured
Query Language (SQL), can be used for creating and operat-
ing relational databases. Analytics involving statistical and
other numerical procedures is the application of computer
technology to solve problems in business and industry. The
science of analytics is concerned with extracting useful prop-
erties of data using computable functions and, generally
speaking, involves the extraction of desired properties of data
sets from large databases. Analytics therefore bridges the
disciplines of computer science, statistics, and mathematics.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example of an analytical data process-
ing system in which user defined functions (UDFs) use
parameter expressions to represent general application pro-
gram models.

FIG. 2 illustrates one example of the integration of an
analytical processing system into a database system, such that
specific instances of a general application program model,
represented by a user defined function, can be invoked
through parameter expressions within a call to the function.

FIG. 3 illustrates one method for executing a query having
a user defined function with parameter expressions.

FIG. 4 is a schematic block diagram illustrating an exem-
plary system of hardware components capable of implement-
ing examples of the systems and methods for user defined
function execution with parameter expressions disclosed in
FIGS. 1-3.

DETAILED DESCRIPTION

Many databases have the framework for processing a lim-
ited number of relatively straightforward in-built analytic
functions. Unfortunately, real-world analytical problems in
databases go beyond the analytic functions natively sup-
ported, and datasets in databases that require intensive ana-
Iytical processing often end up using third party analytical
packages for analytical processing. In situations where the
datasets are large, they are often retained outside the data-
bases due to the limited analytical capabilities available in
databases. These packages require data to be retrieved from
databases, persisted outside the database, and reformatted
before processing. Since these approaches move data away

10

15

20

25

30

35

40

45

50

55

60

65

2

from the secure database tables to a location associated with
the analytical processes, the result is a replication of same
large raw data sets in different formats in multiple locations,
with the accompanying security and data governance risk for
confidential data. Further, this approach results in excessive
manpower cost, licensing costs for analytics processing, and
hardware cost for data retrieval, management, and storage.
The complexity in processing results in significant latency,
making it impractical for real-time analytics.

User defined functions are of varied in nature and can
include general statistical and numerical computations that
are commonly used across different applications as well as
specialty analytics that apply to vertical markets. In order to
integrate user defined functions into the database engine, the
systems and methods described below standardize the syntax
and usage of user defined function in a query. This standard-
ized syntax allows for the invocation of user defined functions
that represent more than a single instance of an application
program model. The user defined functions are adaptable via
a parameter expression to represent the program model in a
more general fashion. This ability of the function to provide
multiple, different instantiations of a general application pro-
gram model, referred to herein as function polymorphism,
allows for a reduction in the overall number of function
implementations necessary to implement the desired func-
tionalities in a single user defined function. Further, integrat-
ing such user defined functions into a database engine for
execution through a SQL query significantly reduces the ana-
lytical application processing time, thus, allowing the results
to reflect the truth of the data universe at the time of perform-
ing the analytics.

FIG. 1 illustrates an example of an analytical processing
system 10 in which user defined functions (UDFs) use param-
eter expressions to represent general application program
models. For example, the system 10 of FIG. 1 can represent a
database system, a data warchouse, a data mart, an
in-memory database, a standalone OLAP engine, a business
intelligence report generation system, a data mining system,
or a federated query processing system. The system 10
includes a processor 12 and a memory 14 connected to a
communications interface 16. It will be appreciated that the
communication interface 16 can include any appropriate
hardware and machine readable instructions for receiving
database queries from an associated query source (not shown)
and returning the results of the queries to the query client.
Accordingly, the communications interface 16 can include
any or all of a bus or similar data connection within a com-
puter system or a wired or wireless network adapter. The
memory 14 can include any appropriate standard storage
devices suitable for use with computer systems, such as mag-
netic and optical storage media.

The device memory 14 can include a query compiler 22, a
processing engine 24 to compile and execute queries on data
tables 26, and a user defined function (UDF) 28. The query
complier 22 can utilize any appropriate query language, for
example, structured query language (SQL) or multidimen-
sional expression (MDX) language. In one implementation,
the user defined function 28 is stored as one of a shared object
or a dynamic link library and loaded into an analytical data
processing system such as a database. The query compiler 22
identifies a call to the user defined function 28 with a list of
input, output and parameter expressions associated with the
function call. The query compiler 22 retrieves the input, out-
put and parameter metadata from the user defined function 28
and validates and resolves the lists of input, output and param-
eter expressions in the call to the user defined function in the
query. It will be appreciated that not every function will have

US 9,229,984 B2

3

an input, for example, table-valued user defined functions
generally do not have input field arguments. Similarly, not
every user defined function has parameter expressions. When
output fields are not specified in a call to the user defined
function, default output fields defined in the metadata of the
user defined function can be used for mapping the output table
object. It will further be appreciated that the list of output
expressions in a call to the user defined function can represent
a subset (i.e., less than all) of the output fields associated with
the user defined function. The output fields can be mapped in
any order irrespective of the order in which they are mapped
in the output metadata of the user defined function. The data-
base engine 24 starts the execution process to the user defined
function by composing input and output table and parameter
objects from the arguments in the user defined function call in
the query and proceeds to execute the function using input
rows set in the input table object. When result rows are pro-
duced from the user defined function in the output table
object, they are retrieved by the database engine 24.

To facilitate the generation of the input and output table
objects, the user defined function 28 exposes input, output
and parameter metadata fields to the query compiler 22 and
the processing engine 24. In the illustrated implementation,
the metadata fields of input, output and parameters of the user
defined function can include a field name, a description of the
field and an associated data type for each field. Output fields
additionally have an indicator to indicate if the field is used as
a default field. When a call to the user defined function does
not explicitly map output field expressions, the default output
fields are used for composing the output table object. The
metadata can further include a defined class type, parameter
fields for customizing the function to a particular application
and other processing instructions for the user defined function
28. In one instance, the exposed metadata can further include
anapplication programming interface (API) comprising rules
for validating and resolving arguments within the call to the
user defined function. It will be appreciated, however, that for
the majority of user defined functions, a generalized API
function pointer in the metadata will validate and resolve
arguments unless the user defined function requires a specific
function for special handling for resolving input, output and
parameter arguments. The user defined function metadata
also includes a second function pointer to construct a process-
ing object instance for the user defined function.

User defined functions representing application program
models can specify one or more parameters in parameter
expressions for generating concrete instances of application
program models. Depending on the user defined function,
parameter metadata fields can be set as optional or mandatory,
and optional parameter metadata fields can, but do not need
to, provide default parameter values. The application pro-
gram models utilizing these parameter expressions can be
conceptualized in three general categories. One category of
application program model uses integer parameter expres-
sions to define variable input and output fields to represent
multiple variant fields in a call to the user defined function to
generate a given analytical model. Variable field defines a
class of fields for the generation of zero, one, or multiple
concrete field instances at runtime of the user defined func-
tion. A variable input or output metadata field is often set to
depend upon a parameter metadata field of integer data type.
An output metadata field may be set to depend upon an input
metadata field which is resolved either by a parameter meta-
data field or by computation from the total number of input
argument fields and fixed input metadata fields if there is only
one input variable field. A variable field application program
model is ideal for fitting statistical application models such as

10

15

20

25

30

35

40

45

50

55

60

65

4

least-squares, maximum likelihood, multiple regression and
multivariate analytics with varying input fields to match the
variable fields and parameters to define the statistical models.
This usage of integrated parameterization allows for efficient
implementation of statistical model fitting analytics such as
least-squares, multiple regression, maximum likelihood and
multivariate analytics where each model variant is expressed
in terms of one or more variable fields. A second category of
application program model uses parameter values to provide
values needed for internal application configuration and pro-
cessing. A third category of application model is represented
by parameter values for providing connectivity to external
application processes and appropriate query or program
script for a given external application process. In general, the
systems and methods described here utilize parameters to
determine the interrelationship between input, output and
processing scenarios of user defined functions that support
application program models.

User defined functions (e.g., 28) that represent application
program models define parameters associated with the mod-
els in the form of parameter metadata fields. A parameter field
is defined with a field name or key, a description, a parameter
field data type, an indicator to show if it is an optional param-
eter field and a default parameter value for the optional field,
if it has one. A user defined function 28 representing an
application program model might utilize one or more param-
eters, and they are defined in an array of parameter fields as a
part of the user defined function metadata. User defined func-
tion expressions in queries are validated and resolved by the
query compiler 22. For user defined functions that represent
application program models, processing instances are gener-
ated at the processing engine 24. User defined functions with
variable input and output fields are validated with the help of
their supporting parameter field value. For variable fields, the
number of concrete field instances are generated using the
integer parameter value and discrepancies between user
defined function expression and requirement are thrown as
exceptions.

FIG. 2 illustrates one example of the integration of an
analytical processing system into a database system 50, such
that specific instances of a general application program
model, represented by a user defined function (UDF), can be
invoked through parameter expressions within a call to the
function. The system 50 includes a processor 52 and a
memory 54 connected to a communications interface 56. It
will be appreciated that the communication interface 56 can
comprise any appropriate hardware and machine readable
instructions for receiving database queries from anassociated
query source (not shown) and returning the results of the
queries to the query source. Accordingly, the communica-
tions interface 56 caninclude any or all of a bus or similar data
connection within a computer system or a wired or wireless
network adapter. The memory 54 can include any appropriate
standard storage devices associated with computer systems,
such as magnetic and optical storage media.

The device memory 54 can include a query complier 62
and a database engine 64 to compile and execute queries on a
database table 66. The query complier 62 includes a query
parser 72 that identifies a call to a user defined function and
any input, output, and parameters expressions that may be
available in the call to the user defined function. To this end,
the query parser 72 processes a call to a user defined function
in a database query using a standardized user defined function
syntax to distinctly map the input, output, and parameter
expressions to appropriate objects. For expressions in UDF
inputs, the processing engine 64 evaluates the expressions
and passes the evaluated values for the respective UDF input

US 9,229,984 B2

5

fields. For expressions in UDF output fields, the compiler 62
separates the expressions from the UDF output fields. The
compiler 62 sets up a unique list of output fields for the UDF
to process so that all the UDF output expressions can be
computed in a call to the user defined function. The process-
ing engine 64 retrieves the values from the UDF output fields
and evaluates the output expressions for each output row.

In one implementation, the user defined functions are built
in a UDF library 74, for example, as shared objects or
dynamic link libraries, and registered with the database
engine. As described previously, each user defined function
exposes a self-describing UDF metadata 76 that can be
retrieved by the query complier 62 for query resolution and
validation. The metadata object of a UDF is a self contained
and describing object. It contains the function pointers for the
UDF processing factory constructor, and the validation and
resolution utility function. It has the arrays of input, output
and parameter fields. The UDF metadata object can include
the UDF name, UDF description, class type, and an indicator
to denote if the UDF requires all the input records together
while processing.

The UDF metadata 76 can include output field metadata
providing for each field a name, a description, a data type, an
indicator to denote if the field is a variable field, a variable
field resolving parameter field name, a size of the field, a null
indicator, a resolving input metadata field name for output
fields, and an indicator to denote if an output field is returned
as a default field when the query does not map output fields.
If the variable field indicator for a given field is set, the field
is a variable field. If it is not set, it is a fixed output field, and
will represent only a single field occurrence in the output
returned for the query. The data type of the field can be set to
one of a valid data types or set to an undefined type. If the data
type of the output field is set as undefined, the output field can
inherit the data type associated with its resolving input field
name and the corresponding input argument. When the data
type of the resolving input field metadata is undefined, the
input metadata field gets first defined at the time of query
compilation with the input argument field from the query
table field which, in turn, resolves the dependent output field.
In such a case, the size of the field and the null indicator are
also inherited from the input argument in the query. Through
the default output indicator field, the metadata for each UDF
designates a list of fields as default output fields. For example,
these default fields can be determined by a developer based on
the general usage of the analytic function represented by the
UDF. When UDFs in queries do not explicitly map output
fields, the default fields are returned from the UDF in the
order of their occurrence in the UDF output metadata. There
must be at least one default output field for a user defined
function. When queries map UDF output fields explicitly in a
call to the user defined function, the default output fields are
ignored. There is no restriction in using default output fields
in the explicit output field mapping list.

Function input fields are extracted from query fields, and
composed as an input table object. Similarly, output fields for
the function call can be resolved and validated from the list of
output field metadata for the function. The query compiler 62
structures these input and output fields into self-describing
table objects with field names, data types and data size to
standardize processing of all user defined function class types
capable of handling multiple records simultaneously. Each
table object has its own metadata to describe each field of the
rows in the table object in terms of its field name, data type,
data length, and indicator showing if the field has null values.
Tables also have the ability to store and retrieve rows of data

40

45

55

6

based on row number. They are capable of handling large row
sets with the ability to manage memory overflow into disk
files.

Each output field has a unique name within a UDF, speci-
fied in the UDF output field metadata. There is one UDF
output field metadata object for each output field, such that for
N output fields for a UDF, there are N output field metadata
objects in an array. Similarly, there are arrays of input and
parameter field metadata objects. Input, output and parameter
metadata arrays are packaged together in a UDF metadata
object along with additional information. The UDF metadata
object is specified by the UDF developer as an immutable
static object that is compiled along with the UDF processing
code. The UDF processing code consists of an implementa-
tion of a UDF interface class, a factory constructor function to
create an instance of the UDF processing object and, option-
ally, a utility function for validating and resolving the UDF
specification in a query at query compile time. In most of the
cases, a general purpose utility function is sufficient for the
validation and resolution of UDF specification in a query.
UDF specific validation and resolution utility functions are
built only for special validation and resolution requirements.
For example, a given utility function can validate the data type
of any parameter expression according to data type provided
by the parameter field metadata such that the utility function
evaluates the integer parameter expression to determine the
repetition count for any variable input or output fields.

The listing of fields in the output expression allows the
output of a user defined function to be mapped to a list of
fields provided within the output metadata. When the number
of output fields in the query is less than the number of output
fields from a call to the user defined function, the user defined
function returns only the fields that are mapped in the query.
Output fields can be mapped in any order in queries, using
either the field name or field position identifier. If output
variable fields are mapped using position identifiers, the vali-
dation and resolution function substitutes position identifiers
with output field names and sets data type and size in the
output table object at query compile time.

The metadata 76 for each user defined function can also
include an associated class type for each function out of a
plurality of function class types 78 to assist in the optimiza-
tion of the query. The user defined function class types 78
implicitly set the rules for data processing in the database
engine along with the cardinality of their output results. For
example, user defined functions belonging to some class
types will be processed in OLAP windows, whereas such
processing is inappropriate for other class types of functions.
Unlike inbuilt functions that return only one output field, all
the user defined function class types may return one or mul-
tiple output fields.

A query optimizer 80 establishes a plan for executing the
received query, including any user defined functions in the
query. The query optimizer 80 retrieves metadata describing
the associated class types of the user defined functions, and
uses the associated class type of each user defined function to
determine if the number of rows in the output of the function
is known or determinate and if the output to the function is
unknown or indeterminate. For class types having known
outputs, the query optimizer 80 can proceed normally. Func-
tions having indeterminate outputs are handled as part of an
alternative optimization process, in which the potential
impact of a function having a large number of output rows is
mitigated. Each of the data objects extracted by the query
parser 72 and the query plan developed at the query optimizer
80 are provided to the database engine 64 to execute the
query, including the user defined function.

US 9,229,984 B2

7

The database engine 64 uses the extracted query plan
objects including the user defined function objects to execute
the query plan to provide a query result, and returns the query
result to the query source via the communications interface
56. During runtime, data are loaded into the input table object
according to the requirements of the user defined function
class type. With the input and output table objects as argu-
ments, the data processing API of the user defined function is
called to process data. The user defined function emits output
into the output table object which is retrieved each time the
processing function is called. In case there is no input, as in
the case of table-valued user defined functions, the processing
function is called with an empty input table object.

In the illustrated implementation 50, each UDF represents
an application program model in conjunction with parameter
metadata, a generic application model capable of generating
a variety of invariant or concrete analytical functions at runt-
ime. The properties of the runtime instance of an analytical
function generated at each call to the functions are controlled
via input parameter values. Parameters are arbitrary in nature
and are dependent upon each UDF application program
model. To allow for the recognition of parameter expressions
within the system, each parameter associated with a given
UDFs is captured within parameter field metadata at the time
of UDF development. Each UDF can have zero, one, or mul-
tiple parameter fields expressed as an array of parameter
metadata fields in the UDF metadata. A UDF parameter meta-
data field contains the parameter field name or key, its
description, data type, an indicator to show if field is an
optional parameter and, a default parameter value for optional
parameter fields, if any.

Parameter data types are Boolean, integer, double, string,
date, time, timestamp, and their array types. Array parameter
values are expressed as comma separated values. Hach
parameter expression consists of a key and a value pair con-
nected by an equal sign, ‘=", where key is the name of the
parameter field metadata and the value is a constant or an
expression that evaluates to a constant value at the time of
invoking the user defined function. Multiple parameter
expressions for a user defined function are separated by a
colon, :*, character. A UDF requires all the parameter fields
except the ones that are optional. If optional parameter fields
have default values, they are automatically collected and sup-
plied to the UDF when the optional fields are not specified in
the UDF parameter expression in the query. Default values
are given for those parameters in UDFs that often use the
default parameter value for computations. For example, in the
stock market, a 50 bar moving average is the most commonly
used window frame size. When 50 is given as the default
frame window size value, the use of such UDF without the
parameter expression automatically gets the default value for
moving average computations. When the application requires
a different window frame size for the computation, the param-
eter value is explicitly presented in the UDF expression in the
query to override the default value.

It will be appreciated that the basic syntax for all user
defined functions, regardless of their associated class type,
can be standardized, such that they are parsed in a similar
manner at the query parser 72. In this syntax, input arguments
consist of fields or expressions composed from fields from the
SQL query table that can be composed into an input table
object, output arguments consist of output fields or expres-
sions composed from output metadata fields from the user
defined function that can be composed into an output table
object, and parameter arguments are provided in the form of
key/value pairs, where the key is the metadata parameter field
name of the user defined function and the values for the field

20

25

40

45

55

8

represented by the key can be composed into a parameter
object. Parameter key/value pairs are separated from one
another by a colon character. In SQL queries, the input argu-
ments for UDFs come from query table fields and GROUP
BY or OLAP PARTION BY expressions produce subsets of
rows into a table object with one or more input fields. There-
fore, field arguments from the query table are separated from
parameters to simplify UDF syntax in queries, which helps in
processing different class types of UDFs. One example of the
standardized syntax for expressing a user defined function in
a query can include an expression such as:

<UDF name> ([<Input Expression List>]) [OUTPUT(<Out-
put Expression List>)] [[WITH] PARAMETER
(<key=valueExpression>[: . . . |)]

Inthe above user defined function expression, items within
brackets are optional, items within parentheses are manda-
tory, and items given within chevrons (<>) are replaced with
appropriate expressions. The names of the user defined func-
tions are unique and case-insensitive. The user defined func-
tions support variable input and output fields composed as
table objects. The various expression lists can comprise a
series of comma separated items. The input expression list, if
present, can include columns or expressions composed using
columns from query table. A mapping for the output fields of
the user defined function is provided using the keyword OUT-
PUT, with the output expression list comprising of one or
more output fields or expressions composed from output
fields. Output fields are field names from the user defined
function output metadata or field position identifiers using
“$#” syntax, where $ represents a special character and #
represents an ordinal number of the output field left to right
starting from one. When the output is not explicitly mapped in
a query, default output fields defined within the user defined
function can be returned. When output fields are represented
by “** as in OUTPUT(*), all the output fields from the user
defined function are returned. Parameters are given as
“key=valueExpression” separated by colons, using WITH
PARAMETER syntax when a user defined function requires
parameters. The “key” is the field name in the user defined
function parameter metadata. The “valueExpression” is a
constant or an expression that evaluates to a constant. The
parameters defined in the expression can be dates, time, time-
stamps, integers, decimal values (double values), character
strings, or comma separated array constants formed from one
of these data types.

The query compiler 62 parses the UDF expression and
renames the output result of the expression with the user
defined alias name when expressions are renamed. This is
particularly important when the UDF output fields or ordinal
numbers or expressions composed using them need to be
renamed into application specific meaningful names. When
UDF output fields are defined in terms of ordinal numbers,
renaming them with unique alias names across the query
makes them usable in other places in the query.

There are a number of UDFs that require variable input and
output fields to support variable application program models.
Statistical applications that fit analytic application models
such as least-squares, multivariate analysis, multiple regres-
sion and maximum likelihood fall under this category. For
example, the number of independent measure traits required
for processing multiple regression models vary for each
application instance for which parameter specifying the num-
ber of independent number of measure traits is required.
There are application program models that require more than
one variable field such as least-squares. Least-squares analy-
ses often require a number of independent discrete factors,
such as sex type, age-group, year, and quarter in a model, for

US 9,229,984 B2

9

which one parameter to specify the number of independent
factors is required. Many least-squares models also require
independent continuous or measure traits, such as advertise-
ment cost and capital investment dollar amount to fit the
least-squares model on dependent field sales value, for which
another parameter for expressing the number of independent
measure traits is required. Additional parameters may also be
required for expressing the interaction between different
independent factors. Thus, each variable field represents a
group of fields at the time of a call to the user defined function.
Each variable field will require a different parameter meta-
data field for generating the variants while calling the user
defined function. It is possible that some variable fields share
the same integer parameter field when they need the same
number of variant fields to be generated in a call to the user
defined function.

To allow for flexibility in such applications, input and
output fields can be marked as fixed or variable types in the
input and output metadata of each user defined function. It
will be appreciated that a given user defined function requires
a standard order and number of inputs, as defined in the input
metadata for the function. Each field is referenced by a cor-
responding input argument field or fields in the query. Spe-
cifically, fixed fields will have only one corresponding input
argument field and variable fields can have zero, one or mul-
tiple consecutive input argument fields in the query

Input and output fields can have fixed or undefined data
types within the metadata. When the data type of an input field
is undefined, the field obtains its data type from the data type
of the corresponding input field argument in the query. The
query input field defines if the field has null value or not.
Therefore, UDF implementations have to consider the possi-
bility of null values and perform appropriate processing. For
fields having a fixed data type, data from the input query field
is converted to the required input field type of the user defined
function at runtime when the data types do not match and the
data type promotion is valid. When the data type is undefined
in an output field, it is set to depend upon a specific input field
for resolution. At the query complier 62, undefined output
fields are resolved from the input fields. Specifically, if an
output field is a variable field, a resolving parameter field
name can be set. If this variable output field is not set to
depend upon a parameter field, an associated resolving input
field name from the input field metadata can be used to pro-
vide the resolution. Ifno parameter field or input field is given
for resolving a variable output field, then it is an exception.

When parameters are given to fit an application program
model, the parameter value is used for generating the number
of concrete fields from the variable field in a call to the user
defined function. The input fields in the query expression
must match the order requirements of the fields including the
variable fields. Concrete generated fields from the variable
fields occur in consecutive order starting from the occurrence
location of the variable field in the metadata. The UDF frame-
work uses this sequence order for input field resolution and
validation. In the case of output variable fields, the fields
obtain their generated field names in consecutive order at the
time of validation and resolution of the UDF expression in the
query. The validation and resolution function of the UDF
framework generates a full complement of all the output
fields internally, according to the designated parameter, and
each of such generated output field gets an ordinal number
starting from one. Therefore, in a call to the user defined
function, each output field gets a unique and fixed ordinal
number that can be identified by the $# syntax. However, the
query application is at liberty to use either the generated field
name or the ordinal number of the output field using the $#

10

15

20

25

30

35

40

45

50

55

60

65

10

syntax for selecting and mapping the output fields to match
the output requirements of the query application.

In the case of output variable fields, they could be set to
depend upon an input variable field or a parameter field.
When they are set to depend upon an input variable field, the
input variable field is generally set to depend upon a param-
eter field. It will be appreciated that when there is only one
variable input field for the UDF, the number of fields can be
computationally determined from a total number of input
arguments and the number of fixed fields. When concrete data
typeis given for the variable output field, the generated output
field obtains the concrete data type from the metadata. How-
ever, when the data type is set as undefined, the output fields
inherit the data type from the input variable field. When the
output field is set to depend upon a parameter field, the param-
eter field value is used for expanding the output fields. Output
variable metadata fields depending only upon parameter
fields must always have a concrete data type. Output field
metadata having undefined data type must always depend
upon an input field metadata for its data type resolution at
runtime.

The number of concrete generated fields represented by
each variable field, whether determined computationally or
via an associated parameter, is referred to as a repetition
count. Each variable field can have any repetition count as the
upper limit. When a variable field is marked to start with a
minimum number of zero count, a parameter field can supply
a repetition count of zero just to let the user defined function
to ignore the field completely. However, when a variable field
is set with a minimum repetition count of one, there must be
at least one input argument field for the field at the time of
processing the query. If there is only one variable field and it
is marked to have a minimum repetition count of zero or one
in the metadata, it can be deduced and validated without a
parameter specification at the time of compilation. It will be
appreciated that variable fields can occur at any input or
output position, and there can be multiple variable fields in
input and output metadata. The repetition count of a variable
field for a given instance of the function can be provided, for
example, as an integer parameter expression. The parameter
expression can also be used to define scalar or array values of
integer, double, date, time, timestamp and character param-
eters used for processing in the user defined function itself.
The system 50 generates the concrete fields at the place of
occurrence of the variable field in consecutive order. Each of
such generated field obtains a new field name by appending
the ordinal number to the base field name of the variable field.
The ordinal numbers start from one to the number of fields
generated. For example, if the base name of a variable field is
‘foo’ and the variant repetition count is three, fields with
variant field names ‘fool’,*f002’ and ‘foo3’ are generated.

Repetition variants from the variable fields are generated
contiguously starting from the position of the field in the
metadata. For example, if there are five output fields for a
UDF with two variable fields at position two and four with
repetition counts two and three respectively, the total output
fields generated, along with their ordinal numbers in paren-
theses, would be:

1. FieldA (81)

2. FieldB1 ($2), FieldB2 ($3)

3. FieldC (84)

4. FieldD1 ($5), FieldD2 ($6), FieldD3 ($7)

5. FieldE ($8)

For the above UDF, the query can retrieve all the output
fields with OUTPUT(*) mapping which results in the output
of'all the fields in the order given above. Given the above list
of output fields for the query, the query can use either the field

US 9,229,984 B2

11

names or the ordinal numbers in any order to select the
required output fields. For UDFs with variable fields, the
variable field names and the ordinal numbers of the fields vary
according to the repetition count of each variable field at
query compilation time. When UDF output fields are mapped
with the ordinal number of output fields, the resolution and
validation utility function determines the repetition count and
resolves the ordinal numbers into appropriate output field
names.

The fixed data type of all the variable input and output
fields is used for all the variant fields generated in a call to the
user defined function. If any variable input fields have an
undefined data type, the data type of the variable input field is
resolved by the data type of the corresponding input field
arguments in the query. A general purpose function supplied
with the system can be used to validate input and output fields
and resolve their data types and lengths at the query compiler
62 when an explicit validation and resolution function is not
supplied by the user defined function as a function pointer in
the metadata. When UDF input variable metadata fields are
defined as a double data type or a similar concrete data type,
the UDF processing infrastructure converts the input field
arguments to match the UDF data type at the time of process-
ing. When UDF input variable fields are defined as undefined
data type, input argument types are passed as such to the UDF
and the UDF must perform data conversion if needed. The
UDF metadata has the provision to specity a set of fields to be
converted to the highest data type in case data type uniformity
is required for processing in the UDF. For example, when a set
of field arguments belonging to such a group consist of short,
unsigned short, int and int64 data types, in one instance they
are all implicitly converted to int64, the highest data type in
the group when one of the fields has int64 type.

One example of an analytic function that can be imple-
mented in the database system using variable input and output
fields governed by parameter expressions is a multiple regres-
sion user defined function. It will be appreciated that in a
multiple regression analysis, the number of independent mea-
sure traits varies according to the regression model fitted
which is illustrated in the example below. Accordingly, a user
defined function to perform this function will have variable
output fields for beta coefficients and averages for indepen-
dent measure traits, with the count of these variable fields
being defined by an integer parameter value representing the
number of independent measures in the desired model. The
user defined function, for example, can be implemented as an
aggregate class type of user defined function because it
returns one output row for N input rows processed.

An example query using a specific instantiation of the
general multiple regression function is presented below. For
example, the query could be used for studying how three
independent expenses are affecting the dependent sales fig-
ures using a sales and cost database table, for example, data
for ten years, with four quarters each, at each region and city
in each country:

SELECT country,

MultipleRegression(salesDollarValue, salespersonTrain-
ingCost, advertizementCampaignCost, couponPromo-
tionCost)

OUTPUT(countObservations, alphalntercept, betal AS
betaSalespersonTrainingCost, beta2 AS betaAdvertize-
mentCampaignCost, beta3 AS betaCouponPromotion-
Cost, avglndependentl AS avgSalespersonTraining-
Cost, avglndependent2 AS
avgAdvertizementCampaignCost, avgIndependent3 AS
avgCouponPromotionCost, avgDependent AS avg-
SalesDollarValue)

10

15

20

25

30

35

40

45

50

55

60

65

12
WITH PARAMETER(COUNT_INDEPENDENT-
_VAR=3)
FROM salesAndCost
GROUP BY country;

In the above example, the first input field is the dependent
field which is a fixed field. The second input field is the
starting point for the independent fields which is marked as a
variable field with a minimum count of one in the metadata,
giving the user defined function two input fields. A first output
field is the alpha intercept, ‘alphalntercept’ and a second
output is the average of the dependent measure trait, ‘avgDe-
pendent,” each of which are fixed fields. A third output field,
‘countObservations,’ is a fixed field representing the number
of observations. A fourth field, marked as a variable field, is
named ‘beta’ and represents the beta coefficients produced by
the regression analysis. A fifth field, also marked as a variable
field, is named ‘avglndependent’ and represents the average
values of the independent measure traits.

Note that the fourth field can be repeated until all the beta
co-efficient fields are mapped. As described previously, the
names of the fields are generated by appending an integer
starting from one. Thus, in the given example, there are three
beta co-efficient fields with field names betal, beta2 and
beta3 that are generated from the output variable field base
name ‘beta’. The fifth field, avgIndependent starts only after
all the beta fields are mapped and repeats similarly with
number appended to it starting from one. Using the output
field names or the ordinal number, output fields can be
mapped in any order in a query.

The user defined function requires one parameter and looks
for COUNT_INDEPENDENT_VAR keyword, that is, the
parameter field name in the parameter object to decide which
multiple regression model to fit. In case the parameter is not
given, since there is only one input variable field, the valida-
tion and resolution API function computes the correct repeti-
tion number from the total number of input argument fields.
In this example given, the model specifies three independent
traits and, therefore, three output fields each for ‘beta’ and
‘avglndependent’ are generated. Note that, in the metadata,
the variable output fields, beta and avglndependent, are
marked for dependency resolution from the second input
variable field. If the query does not map the ‘avgindependent’
output fields from independent traits or any other field, the
user defined function understands it from the output fields
requested by the user query in the output table object and does
not project results for them.

A second category of parameters for use in the illustrated
system 50 relate to internal processing of the user defined
function. Parameter specification for UDFs is a general
mechanism to design any application program model for use
in SQL queries. To support a variety of known and unknown
analytic application requirements, parameters provide a gen-
eral mechanism to abstract application program models in a
UDF framework. Once such UDF framework is built and
integrated in the SQL engine, it provides the opportunity to
build any type of application as a UDF. To provide specific
instantiations of the application program model from this
framework, the UDFs can be provided with a variety of inter-
nal parameter input values that aid in the internal application
configuration and processing.

For example, a number of UDFs require constant values,
such as the regression constant value to fit the regression line
for the input argument. Alternatively, the function can be
provided with a source description to obtain constant values.
For example, when UDFs require a number of values for
computation or lookup, large data sets can be kept in a local
file for which the source description can be given in the UDF

US 9,229,984 B2

13

parameter. Different kinds of large lookup datasets can be
built as trees or sorted records in files or in hosted server
applications and consumed while processing the UDF input.

In a number of situations, UDFs require parameters to
identify what input fields represent, particularly when it
comes to variable input fields. For example, when interaction
effects are studied between independent discrete factors in
least-squares equations, there is a need to specify the interac-
tion sets of independent factors. When UDFs are built for
supporting different related applications using the same input
data, parameter values can be used for indicating the desired
application computation required for the input. Parameters
can also be used to supply runtime program scripts to a UDF
or a file name containing program script, allowing the UDF to
compile the program script and generate execution code to
process the input rows. Large-size scripts can be developed in
files, with parameters used for supplying the script file names
to the UDFs.

A third category of parameters for use in the illustrated
system 50 relate to connectivity with external sources of data
utilized by the user defined function. A number of UDF
applications require connecting with and processing in exter-
nal application processes where UDFs act as a client to an
external application server. Parameters are needed to model
this external application processing. For example, in an enter-
prise, operational databases are configured to continuously
receive and store data as and when the data are generated by
various live transacting application processes. Each such
application generates only a subset of the enterprise data that
impacts other processes in one way or other. Thus, databases
are the hubs for many application processes in an enterprise,
and can be configured to supply data to external application
processes as new rows are inserted into tables. UDF's serve as
external gateways for databases where such gateways are
usually not accessible. In order to support communication
with external processes in databases in a non-intrusive way,
UDF parameters play an important role in abstracting con-
nectivity and application processing information. For
example, row sending UDFs can be configured with param-
eters for sending rows to live applications from databases as
database triggering UDF execution at row insert or delete or
update operation.

In order to connect to external processes, connection infor-
mation can be provided via parameters in a call to a UDF. The
connection information can specify, for example, means for
accessing the external process, such as a shared memory key,
or an address and port of a TCP/IP, multicast, or UDP con-
nection. For applications that require authentication services,
parameters defining a user name and password can also be
provided. Similarly, when UDFs require accessing a web-site
through a web-server, a uniform resource locator (URL) can
be supplied through a parameter. Some UDF applications
require processing information in addition to connection
information. UDFs that mediate federated query processing,
such as table valued user defined functions (TVUDF), can
utilize an SQL query for an external database to process.
There are innumerable external query service processes that
process semi-structured or unstructured data sources and
return a table of rows, and each application may require a
specific query or script conforming to its own syntax and
semantics. To allow a given UDF to utilize any of these
processes, application processing queries or scripts are sup-
plied in the form of parameters in UDF queries.

The illustrated database system makes it possible to model
complex analytic applications, including statistical applica-
tions, in SQL queries. Data processing analytical functions
are varied in nature and exhibit different levels of complexity.

10

15

20

25

30

35

40

45

50

55

60

65

14

Using the systems and methods provided herein, many ana-
Iytic applications can be represented as model program
designs capable of solving a variety of application problems
with varying datasets and representation of the processing
models with parameters. When analytic application program
models are built as user defined functions with distinct map-
ping of input and output, and parameters to describe the
processing model, complex analytic problems can be
abstracted in simple syntactic expressions for use in SQL
queries. This simplifies UDF expressions in SQL queries and
makes UDF queries easier to formulate and use. Essentially,
by defining a common syntax for UDF expressions in queries
and the semantics of processing such expressions, SQL que-
ries can be used to solve complex business analytic problems
within the context of the database SQL query processing
system.

Using the syntax, categories of analytic application models
are abstracted with parameters for modeling variable input
and output fields, and variants of user defined function mod-
els for internal and external processing can be utilized. The
use of the parameter field allows for user defined functions
general enough to allow processing of many analytical appli-
cation models by varying only parameters in queries. Statis-
tical applications such as multiple regression, least-squares,
multivariate analytics and frequency distribution can be
implemented with different statistical models depending
upon the requirements of a given analysis simply by changing
the parameter field of the query. Accordingly, parameteriza-
tion makes it easier to represent complex models in simple
key/value pair of parameters.

FIG. 3 illustrates one method 100 for executing a query. At
102, a call to a user defined function, representing an appli-
cation program model, is identified in a structured query
language (SQL) query by a query compiler, including input
arguments, mapping of output fields and a parameter expres-
sion defining parameter values for the user defined function.
At 104, the parameter value is evaluated at a processing
engine. If it is determined that the parameter expression
defines a parameter with a first value (1), the processing
engine executes the user defined function using the input
argument to provide a function output representing the results
of a first value of the parameter to perform a first analytical
model at 106. If it is determined that the parameter expression
defines a second parameter value (2), the processing engine
executes the user defined function using the input argument to
provide a function output representing the results of a second
value of the parameter to perform a second analytical model
at 108.

FIG. 4 is a schematic block diagram illustrating an exem-
plary system 200 of hardware components capable of imple-
menting the example systems and methods for user defined
function integration disclosed in FIGS. 1-3. The system 200
can include various systems and subsystems. The system 200
can be a personal computer, a laptop computer, a workstation,
acomputer system, an appliance, an application-specific inte-
grated circuit (ASIC), a server, a server blade center, a server
farm, or any other appropriate processing component.

The system 200 can include a system bus 202, a processing
unit 204, a system memory 206, memory devices 208 and
210, a communication interface 212 (e.g., a network inter-
face), a communication link 214, a display 216 (e.g., a video
screen), and an input device 218 (e.g., a keyboard and/or a
mouse). The system bus 202 can be in communication with
the processing unit 204 and the system memory 206. The
additional memory devices 208 and 210, such as a hard disk
drive, server, stand alone database, or other non-volatile
memory, can also be in communication with the system bus

US 9,229,984 B2

15

202. The system bus 202 operably interconnects the process-
ing unit 204, the memory devices 206-210, the communica-
tion interface 212, the display 216, and the input device 218.
In some examples, the system bus 202 also operably inter-
connects an additional port (not shown), such as a universal
serial bus (USB) port.

The processing unit 204 can be a computing device and can
include an application-specific integrated circuit (ASIC). The
processing unit 204 executes a set of instructions to imple-
ment the operations of examples disclosed herein. The pro-
cessing unit can include a processing core.

The additional memory devices 206, 208 and 210 can store
data, programs, instructions, database queries in text or com-
piled form, and any other information that can be needed to
operate a computer. The memories 206, 208 and 210 can be
implemented as computer-readable media (integrated or
removable) such as a memory card, disk drive, compact disk
(CD), or server accessible over a network. In certain
examples, the memories 206, 208 and 210 can comprise text,
images, video, and/or audio.

Additionally, the memory devices 208 and 210 can serve as
databases or data storage. Additionally or alternatively, the
system 200 can access an external data source or query source
through the communication interface 212, which can com-
municate with the system bus 202 and the communication
link 214.

In operation, the system 200 can be used to implement a
database system that executes user defined functions within
or outside of an online analytics processing (OLAP) frame-
work in response to an appropriate query. The queries can be
formatted in accordance with various query database proto-
cols, including SQL. Computer executable logic for imple-
menting the real-time analytics system resides on one or more
of'the system memory 206, and the memory devices 208,210
in accordance with certain examples. The processing unit 204
executes one or more computer executable instructions origi-
nating from the system memory 206 and the memory devices
208 and 210. The term “computer readable medium” as used
herein refers to a medium that participates in providing
instructions to the processing unit 204 for execution.

What have been described above are examples of the
present invention. It is, of course, not possible to describe
every conceivable combination of components or methodolo-
gies for the purpose of describing the present invention, but
one of ordinary skill in the art will recognize that many further
combinations and permutations of the present invention are
possible. Accordingly, the present invention is intended to
embrace all such alterations, modifications, and variations
that fall within the scope of the appended claims.

What is claimed is:

1. An analytical data processing system comprising:

a processor;

a non-transitory computer readable medium, comprising
machine readable instructions executable by the proces-
sor, the instructions comprising:

a query compiler to identify a call to a user defined
function, including an input expression that defines
input values for the user defined function and a param-
eter expression, comprising a key and a value pair
where key is the name of the parameter field metadata
and the value is a constant or an expression that evalu-
ates to a constant value at the time of invoking the
user, for the user defined function, within a query; and

aprocessing engine to execute the user defined function
to provide a function output according to the input
expression and the parameter expression.

10

15

20

25

30

35

40

45

50

55

60

65

16

2. The analytical data processing system of claim 1,
wherein the user defined function represents an application
program model, such that the function output represents the
results of a first analytical model, evaluated using the defined
input values, for a first parameter expression and the function
output represents the results of a second analytical model,
evaluated using the defined input values, for a second param-
eter expression.

3. The analytical data processing system of claim 2,
wherein the user defined function has a variable field defining
a class of fields for the generation of zero, one, or multiple
concrete field instances at runtime of the user defined func-
tion, the variable field being one of a variable input field and
avariable output field, the parameter expression evaluating to
an integer repetition count defining a number of variant fields
represented by the variable field.

4. The analytical data processing system of claim 3, the
variable field comprising a variable output field and the user
defined function having metadata exposed to the query com-
piler and the processing engine, the metadata including a base
field name for the variable output field, and the variant fields
represented by the variable output field having names gener-
ated in an output table object formed from the base field name
and an ordinal number.

5. The analytical data processing system of claim 3,
wherein the variable field has associated metadata compris-
ing a field indicating a minimum repetition count, such that if
the minimum repetition count is one, the variable field must
occur in a call to the user defined function, and if the mini-
mum repetition count is zero, the variable field can be omitted
from a call to the user defined function.

6. The analytical data processing system of claim 1, the
query complier accessing a utility function associated with
the user defined function, the utility function validating an
associated data type of the parameter expression according to
a data type provided by metadata associated with the user
defined function and evaluating the parameter expression.

7. The analytical data processing system of claim 1, the
user defined function comprising parameter metadata defin-
ing an associated data type for the parameter expression, the
associated data type comprising any of Boolean, integer,
double, string, date, time, timestamp, and their array types.

8. The analytical data processing system of claim 1, the
user defined function comprising parameter metadata indi-
cating, for each of a plurality of parameters associated with
the user defined function, whether a parameter is mandatory,
such that a parameter expression associated with the param-
eter must be present in a call to the user defined function, or
optional, such that no parameter expression associated with
the parameter is necessary in a call to the user defined func-
tion.

9. The analytical data processing system of claim 8, the
parameter metadata further comprising, for a parameter indi-
cated as optional, a default value, such that when no param-
eter expression associated with the parameter is present in the
call to the user defined function, the default value is used for
the execution of the user defined function.

10. The analytical data processing system of claim 2,
wherein the parameter expression provides a constant param-
eter value for an internal processing requirement of the user
defined function.

11. The analytical data processing system of claim 2, the
parameter expression supplying a runtime program script or a
file name containing a program script for the user defined
function, the user defined function compiling the program
script to generate an execution code and to process input rows
represented by the input expression.

US 9,229,984 B2

17 18
12. The analytical data processing system of claim 1, 14. The analytical data processing system of claim 12,
wherein the parameter expression comprises information for ~ wherein the user defined function has an associated variable
one of connecting, accessing, processing and generating out- field and the defined parameter value represents a number of
put from an external data processing system. variant fields represented by the variable field.
13. An analytical data processing system comprising; 5 15. A non-transitory computer readable medium storing

a processor;

’ . . machine executable instructions, the machine executable
a non-transitory computer readable medium, comprising

machine readable instructions executable by the proces-

sor, the instructions comprising:

a query compiler to identify a call to a user defined
function, the user defined function representing an
application program model and including an input
expression that defines input values for the user
defined function and an parameter expression, com-
prising a key and a value pair where key is the name of
the parameter field metadata and the value is a con-
stant or an expression that evaluates to a constant
value at the time of invoking the user, defining a
parameter value for the user defined function, within
a query; and

aprocessing engine to execute the user defined function
to provide a function output according to the input
expression and the defined parameter value, such that
the function output represents the results of a first
analytical model, evaluated using the defined input
values, for a first parameter expression and the func-
tion output represents the results of a second analyti-
cal model, evaluated using the defined input values,
for a second parameter expression.

10

15

20

25

instructions comprising:

a query compiler to identify a call to a user defined func-
tion, an input expression defining a variable input field,
representing a class of fields for the generation of zero,
one, or multiple concrete input field instances at runtime
of the user defined function, and an output expression
defining a variable output field, representing a class of
fields for the generation of zero, one, or multiple con-
crete input field instances at runtime of the user defined
function, for the function within a query, and an integer
parameter expression defining a number of concrete
input field instances represented by each variable field
and generate an input table object and an output table
object for the user defined function, the generated output
object containing the fields represented by the variable
input field and the variable output field; and

a processing engine to execute the user defined function
with the input and parameter expressions and populate
the fields represented by the variable output field in the
output table object with the output of the user defined
function.

